查看原文
其他

中国科大制出分离“神器” 可高效分辨“真假悟空”

化学加 2021-06-12

选购年费套餐,企业推广更超值

导读

中国科学技术大学26日消息,该校刘波教授课题组开发制出一种分离“神器”——手性分离膜,可高效区分、分离“真假悟空”。这一成果近日发表在《自然·通讯》上。

跳转阅读→兰州大学药化产业校友会成立,200余位产业校友相聚上海,提前祝福母校110岁生日快乐

在两层二维石墨相氮化碳(云层)之间插入合适的手性位点(树),可以“抓住”右旋分子(六耳猕猴),让左旋分子(孙悟空)通过,从而达到高效分离不同手性分子的效果。(图:崔劼,中国科大提供)

《西游记》中,六耳猕猴和孙悟空站在一起,上天入地都难以分辨,最后只有如来佛筛选出假悟空真六耳,才保证了西行的顺利进行。

在生物分子中,也存在许多孙悟空和六耳猕猴难分彼此的情况,这就是所谓不同手性的同分异构体(对映异构体)。两个分子的化学式一模一样,只是空间结构有差异,一种在空间上左旋,另一种是右旋的。两者的关系像是左右手,看起来一样,但却不能重合。对映异构体的效用有巨大的差异,比如左旋氨氯地平能够治疗高血压,而右旋氨氯地平却没有效用。

在生物制药过程中,经常会制备出手性同分异构体,但是我们所需要的却只是其中一种手性分子,需要全部去除另外一种。左手性分子和右手性分子就像孙悟空和六耳猕猴一样难以区分和分离,怎么办呢?

据介绍,手性分离膜是当前被寄予厚望的一种解决方案。目前可以有聚合物和晶体材料两种方案,但是聚合物膜分离效率低,晶体材料又难以制备成膜。

刘波教授课题组从二维层状材料出发,通过调控层间距并在层空间中引入手性位点,开发出高度稳定的手性分离膜。可以“抓住”左旋手性分子,“放过”右旋手性分子,分离效率高达89%,这一成果有望产业化。

论文的第一作者、博士生王洋介绍,“这种分离膜对不同的手性对映异构体表现出非常明显的选择性。它可以高效分离出右旋柠檬烯,截留了大部分左旋柠檬烯。如果进一步对整个体系施加一定压力,还可以使分离效率在时效性上得到大幅改善。”

刘波课题组提出一种依赖静电作用,调控二维材料层间距及其化学环境的普适性策略,可以制备高度稳定的二维薄膜材料,实现亚纳米尺度下对不同尺寸的物种进行精准筛分,从而在污水净化、海水淡化等方面表现出应用潜力。

“更重要的是,由于在层间成功引入手性位点,可以用来实现对映异构体的高效分离,从而赋予二维材料分离膜更为广阔的应用前景。”刘波说。实验室目前制备的手性分离膜是厘米级,团队正积极将薄膜尺寸向米级推进,以应用于具有高医药附加值的手性药物分子生产。(中新网合肥6月26日电 范琼 吴兰 )


中国科大在二维分离膜的高效选择性渗透研究中取得进展

石墨相氮化碳(graphitic carbon nitride, GCN)是一种新型二维层状材料,在催化和分离领域具有广阔的应用前景。近年来,以氧化石墨烯(GO)为代表的二维膜制备及其在分子尺度的筛分研究近年来成为分离领域的研究热点,但GO膜在水相体系中存在结构及性能不稳定性,对环境变化较为敏感,从而限制其实际应用。另外,GO膜的研究目前主要集中在水相体系中,而一些特定的生物或药物领域所使用的手性分离膜,需要在非水相体系中实现对映异构体的高效分离。具有类似GO膜特性的GCN基分离膜的性能探究目前尚处于初级阶段,而如何充分发挥其层间距和层间环境可调的特性、化学惰性和结构稳定性,使其实现稳定、高效的纳米尺度下的选择性渗透亟待研究。

近日,中国科学技术大学化学与材料科学学院刘波课题组通过质子化和阴离子嵌入的协同作用,发展了一种GCN层间距离和层间化学环境调控的普适性策略,并实现GCN基薄膜在亚纳米尺度下的精准筛分能力和高效立体选择性渗透。相关研究成果以“Graphite phase carbon nitride based membrane for selective permeation”为题,于6月7日发表在《自然·通讯》(Nature Communications, 2019, 10, 2500)。论文的第一作者是中国科学技术大学博士研究生王洋同学。

GCN共轭平面结构中具有确定分布的氮原子,氮上的孤电子可以被强质子酸(比如硫酸,SA)质子化,而强酸阴离子可以同时嵌入到GCN的纳米片层之间,并可在亚纳米尺度精确调控层间距离。GCN-SA复合纳米结构使可供分子/离子自由进出的有效层间距增大10.8Å。研究人员发现这种质子化的GCN与酸根离子之间的静电作用使得制备出的纳米复合物及纳米级厚度的薄膜非常稳定且具有两亲性。具有匹配尺寸的待分离物种可以选择性通过GCN-SA薄膜中阴离子支撑的层空间,并表现出明确的溶质分离截断半径,从而在亚纳米尺度下实现对不同尺寸和电荷的分子/离子的精准筛分(图1)。

图1 (a)强酸阴离子嵌入质子化的GCN进行层间距精准调控示意图。R-SO3代表Brønsted酸根离子;(b)GCN-SA薄膜对不同尺寸的溶质分子的筛分效应示意图;(c)纳米级厚度GCN-SA薄膜在亚纳米尺度下的精准筛分性能,内置图为不同溶质的截留率和水合半径之间的关系。

研究人员继续利用这一概念,通过引入手性樟脑磺酸(CSA),在GCN质子化和离子嵌入层间的过程中,一方面实现对层间距进行精准调控,另一方面改变层间化学环境,引入手性位点。研究结果显示,GCN-CSA手性分离膜对不同分离物种具有明确的截断分子量,一系列对映异构体在GCN-CSA薄膜中的渗透表现出较好的选择性,并可通过优化参数得到柠檬烯对映体过量值为89%的高效选择性渗透(图2)。

图2 (a)GCN基手性分离膜对不同对映异构体的立体选择性渗透示意图;(b-d)GCN-CSA薄膜对柠檬烯外消旋体进行(b-c)等压和(d)给压渗透, Feed端和Permeate端溶液的CD信号强度随渗透时间的变化。

综上,这项工作阐述了惰性GCN的普适性功能化策略,为精确调控二维材料的层间距和层间化学环境提供新的研究思路,实现了GCN基分离膜在亚纳米尺度下的精准筛分和立体选择性渗透性能,并使二维材料基手性分离膜在一些特定领域(如制药和生物)的应用成为可能。

该项研究得到国家自然科学基金面上项目、中央高校基本科研专项资金和安徽省自然科学基金的资助。

附文章链接:https://www.nature.com/articles/s41467-019-10381-z



来源 | 中新网、中国科学技术大学            编辑 | 化学加

 入驻化学加网快速通道,将与微信小程序同步展示 

2万多家化工医药企业已入驻 

(长按识别二维码立即注册入驻)

分享赐稿 | 转载联系  | 广告推广 | 商务合作 

联系化学加编辑部 :18676881059(手机/微信)

邮箱:gongjian@huaxuejia.cn

拓展阅读


更多精彩,关注本号后,点击菜单栏或回复字母查看

回复 V:Nature/Science    回复 W:有机化学

回复 T:科研动态    回复 i:美丽化学

回复 P:化工应用    回复 L:科普知识

回复 C:漫画化学    回复 D:化学趣史

回复 F:化学视频    回复 Z:科技名人


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存