查看原文
其他

一份研报读懂:类器官行业

中君亚泰 医药荐客 2022-10-15

类器官行业尚未在国内形成集中化产业集群。除了传统的国外细胞培养试剂和原料代理商外,中下游的公司较为稀疏。在北京、上海和广州区域先后涌出了几家创业型公司。


类器官行业在欧洲国家发展较为迅速,这和欧洲类器官科研最早起步以及积累最多必不可分。类器官的领头人Hans Clevers成立的Hubrecht Organoid Technology(HUB)是类器官最早的研发中心,HUB技术授权促进了Epistem、Cellesce、Crown Biosciences、STEMCELL Technologies在内的一批类器官公司的涌现。中国在类器官领域中,近年来其实也呈现出科研数量大幅度上升的趋势,尤其在2019-2020年这两年间显现出了强劲的发展势头,发表的文献数量在全球的排名从第六位(2009-2019年)跃至第二位(2020年),仅次于美国。参考欧洲的类器官发展模式,可以预计中国基础科研积累的提升将加速类器官产业化的进程,在不远的将来我们也将看到更多类器官公司的涌现。



-06-

类器官的市场竞争

在全球范围内类器官已经显示出其强大的发展潜力,国外已经形成一定的市场竞争格局,多家公司正在快速的发展,例如AIVITA Biomedical、System1 Biosciences、JangoBio等。但国内还未真正形成竞争市场。

国内外部分类器官公司

数据来源:中君亚泰根据公开资料整理



-07-

类器官的挑战

类器官培养技术目前正处于技术爆发和科研成果井喷的阶段,行业发展具有很大的前景,但也面临较大的挑战。比如如何利用好人体胚胎的干细胞建立持久稳定的体外模型;培养条件和环境刺激如何更真实的模拟还原人体微环境;科研属性的产品如何实现量产,如何转化为临床产品等。


类器官作为新型的药筛模型,成本虽然较PDX更低,但还是远高于细胞系。类器官成本占比较高的包括培养使用的基质胶,常用的基质胶为美国BD Biosciences公司的Matrigel®,在行业内处于较为垄断的地位,价格较高。Matrigel可以产生类似于哺乳动物细胞基底膜的生物活性基质材料,帮助多种类型的细胞达到附着和分化。Matrigel的来源是小鼠肉瘤细胞系,除了成本较高的问题,同时批次间存在一定的变异性。且由于是动物来源,对于有机类的药物的检测有局限性。考虑到小鼠来源的细胞外基质对于药物筛选实验结果存在一定的干扰,因此基质的工程技术开发用于合成外源差异较小的、非动物来源的基质胶用于成本下降和性能优化将是类器官产业化需要解决的关键性问题之一。基质胶以外,培养也涉及多种细胞因子组合使用,细胞生长因子通常也价格不菲。选择效果更好的细胞因子以及尝试减少使用细胞因子的数量也可以带来成本下降的空间。


目前大多类器官本身并不具备血管化的结构。因此,随着类器官体积的增长,类器官受限于氧气的缺失以及代谢废物的增加,可能导致的组织坏死。已有研究构建血管内皮细胞微环境的肿瘤类器官,将类器官肿瘤细胞和血管内皮细胞在Matrigel上共同培养,生成血管结构以期解决类器官血管化缺失的问题。


血管化以外的难点还包括模拟肿瘤和免疫环境的相互作用关系。2019年Nature Protocol 期刊发表了肿瘤类器官和免疫细胞共同培养的相关protocol,可以体现和模拟出肿瘤微环境的部分特征。以上皮类器官和免疫细胞共培养模型为例,可通过在培养基中添加活化的免疫细胞、在组织消化成单细胞后和免疫细胞共同生长、添加ECM中的重组细胞因子等方法重塑类器官和免疫细胞的相互作用。


相比于单个类器官,类器官系统的构建能够对药物疗效和潜在毒性做出更完整全面的评估。目前类器官仅能检测出药物对于肿瘤的抑制效果,对于其他器官组织是否存在其他副作用和安全性风险并不能做出预判。为了解决这一问题,2017年Skardal et al.构建了有心脏、肺部、肝脏组成的集成于闭合循环关注体中的类器官系统,以达到全面揭示药物对不同器官的毒性和药效的目的.


重复性和一致性 也是类器官发展的重大瓶颈,这很大程度上由于过程控制的欠缺与行业标准的空白。类器官培养过程中人为因素的过多参与、自动化程度低导致因为系统偶然性造成的误差较大。同时,类器官检测手段十分匮乏,活体观察主要集中在形态学观察,断点观察集中在基于荧光的各类指标的检测,能够活体实时对类器官各项指标进行检测的光学、电化学等手段仍较为欠缺。当前,类器官很多研究者致力于制造更新的类器官,做出之前未能做出的类器官,我们可以制作海马体、垂体、腺体、脾、肾的类器官,却难以确定一个符合要求的类器官需要满足那些个体的诸如尺寸、形状、基因表达量等,群体的诸如类器官之间的方差等统计学指标。这将限制类器官的高效研究与向临床研究的转化。


对于类器官培养过程中的工程控制也是亟待解决的问题。当前类器官培养大多使用Matrigel水凝胶作为培养基质,Matrigel是康宁生命科学公司生产的Engelbreth-Holm-Swarm (EHS)小鼠肉瘤细胞分泌的胶状蛋白混合物。Matrigel因其含有外源成分,难以应用在人的很多治疗场景。另一方面,虽然类器官与微流控技术已有一些结合研究的例子,但使用微流控芯片对类器官生存的流体环境进行模拟仍不成熟,如何使用微流控等技术对类器官培养时流体微环境进行控制是亟待解决的问题。同时,现有类器官的直径约在100-500μm之间,虽然具有一定程度的尺度效应,但还是难以模拟真实组织、器官的场景。倘若要制造尺度更大的类器官,类器官的血管化也是十分重要的问题。



-08-

类器官的未来发展

1、国家政策推动

2021年1月28日,科技部下发的《关于对“十四五”国家重点研发计划6个重点专项2021年度项目申报指南征求意见的通知》中,把“基于类器官的恶性肿瘤疾病模型”列为“十四五”国家重点研发计划中首批启动重点专项任务。另外,“十四五”国家重点研发计划中重点指出,类器官作为一项重大的技术突破被用于疾病模型的建立中,且可用于研究病理状态下干细胞变异、异质性及其发生机理,挖掘疾病诊疗的新靶标,探索诊疗新策略类器官技术在未来将有非常大的应用价值和发展前景。

数据来源:科技部
2、类器官技术发展

传统制备法,是一种依赖于生长因子的3D培养技术,有其局限性(比如对类器官及局部环境的控制不够精确)。此外,传统制备法不能很好地复制器官发展过程中复杂又动态的微环境,而这种微环境恰恰是器官形成的有利因素,这就使得获取更完整的类似体内器官发展的类器官过程困难重重。


目前最前沿的便是,由器官芯片技术与类器组合成的“类器官芯片”技术类器官不是唯一,多模型的整合才是王道,基于原位组织和动物模型的研究仍将是生物医学研究的金标准。


类器官已经成为一种吸引人、易于从多能干细胞系复制的人体外组织模型,但是,以大脑类器官为例,其与原位细胞类型之间仍存在着很多差异,从而可能会混淆人们对内源性脑功能的认识,并可能提出关于神经病理学的误导性假设,最终可能误导治疗方法。这就需要对原位组织中的每一种细胞特性进行深入的了解和表征,包括通过结合转录组、表观基因组和蛋白质丰度等方法来表征的细胞类型;包括空间组织、形态和物理连接性参数的细胞结构组织;以及包括代谢状态和电生理在内的细胞和组织功能指标。


在今天,类器官尚且无法独当一面,而未来,类器官也不需独当一面,多模型的整合才是研究的最佳方案。展望未来,类器官研究前景巨大。类器官高度仿真的疾病模型有望继续在精准医疗、再生医学等领域取得新的进展。同时,“ 类器官+”,有望给类器官研究带来新的增长点。与活体实时成像技术结合的类器官技术有望让人们第一次实时观察到人早期发育过程;与生物3D打印相结合,有望实现基于类器官的功能性治疗;与“人类细胞图谱 (Human Cell Atlas, HCA)”技术结合,类器官细胞图谱将推进病加速包括罕见遗传病、复杂多因素疾病、精准肿瘤治疗等以疾病为中心的研究。
欢迎自荐推荐和转发分享,电话/微信:13564288425


生物医药职位汇总-20221001

PROTAC研发掀热潮,创新转型正当时

PROTAC:飞速发展的20年

合成生物学报告:第三次生物技术革命中的机遇与挑战

外泌体行业分析报告

重磅!mRNA行业全景图:火种已燃,大势已至,聚力向前,技术为王

盘点近300家“FIERCE 15”的biotech:M&A与倒闭是主基调

2022行业薪酬报告-五大猎头公司出品

2022年中国CAR-T细胞治疗市场现状、专利情况及重点企业分析

溶瘤病毒行业深度研究报告

“结构生物学”的创新利器——冷冻电镜行业深度研究报告!

经纬行研丨探粒寻微惠世间:核素药物的行业研究进展

吸入制剂行业深度研究报告

类器官行业研究报告

双特异性抗体行业深度研究报告

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存